Микросхемы Led Драйверов

  1. Микросхемы Светодиодных Драйверов
  2. Микросхемы Led Драйверов

Параметры схемы драйвера:. входное напряжение: 2В до 18В.

Эти микросхемы — универсальные высоковольтные (входное напряжение до 75 В) контроллеры для построения LED-драйверов. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть.

выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе). ток: 20 ампер В качестве источника питания я применил готовый трансформаторный блок питания на 5 Вольт, т.к для питания одного светодиода его вполне хватит. Радиатор на мощный транзистор не нужен, т.к ток около 200 мА. Поэтому резистор R3 будет около 2 кОм (I=0,5/R3). Он является установочным и закрывает транзистор Q2, если течет повышенный ток Транзистор FQP50N06L в соответствии с паспортными данными работает только до 18 Вольт, если требуется больше вам следует воспользоваться.

Led

Микросхемы Светодиодных Драйверов

Драйверов

Т.к данная схема очень проста собрал ее без печатной платы с помощью навесного монтажа. Следует также сказать о назначении транзисторов в этой конструкции. FQP50N06L применен в качестве переменного резистора, а 2N5088BU в роли токового датчика.

Он также задает обратную связь, которая следит за параметрами тока и держит его в заданных пределах. Работы драйвера на микросхеме MAX756 можно условно поделить на два цикла, а именно: Первый: Внутренний транзистор микросхеме в данный момент открыт и через дроссель течет линейно-нарастающий ток. В электромагнитном поле дросселя копится энергия. Конденсатор C3 потихоньку разряжается и отдает ток светодиодам. Продолжительность цикла около 5 мкс. Но этот цикл может быть завершен досрочно, в том случае, если максимально допустимый ток стока транзистора возрастет более 1 А.

Микросхемы Led Драйверов

Второй: Транзистор в этом цикле заперт. Ток от дросселя через диод заряжает конденсатор C3, взамен того, что он потерял в первом цикле. С увеличением напряжения на конденсаторе до некоторого уровня данный этап цикла финиширует. Микросхема MAX756 переходит в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в этом случае не стабилизировано, оно снижается, но остается по возможности максимально возможным. К схеме подключены четыре светодиода типа L-53PWC «Kingbright».

Так как при токе 15 мА прямое падение на светодиодах будет 3,1 вольта, лишние 0,2 вольта погасит резистор R1. По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения. Дроссель можно взять самодельный, намотав проводом ПЭВ-2 0,28 на сердечник (кольцо размером К10x4x5 из магнитной проницаемостью 60) от сетевого фильтра 35 витков. Так же можно взять и готовые дроссели с индуктивностью от 40 до 100 мкГн и рассчитанные на ток более 1А. С помощью R1 осуществляется настройка потока выходного тока. В момент включения, светодиодные драйверы будут работать в 1Х режиме, т.е выходное направление будет равно входному.

Led

Если выходного напряжения будет нехватать для запуска и работы светодиодных драйверов, то произойдет автоматическое увеличение уровня входного тока, в 1,5 Х раза. Сопротивление в схеме будет меняться в зависимости от тока светодиода (мA). Допустим, если он будет минимальным и равным 1 мА — R1 - 649кОм. 5 мА — 287 кОм, 10 мА — 102 кОм, 15 мА — 49.9 кОм, 20 мА — 32.4 кОм, 25 мА — 23.7 кОм, 30 мА — 15.4 кОм. Словарный запас для intermediate.